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An incompressible fluid fills a container of fixed shape and size and of uniform 
cross-section in the (2, y)-plane, the m rigid side walls and the two rigid end walls 
being in contact with the fluid. Here (x, y, z )  are bhe Cartesian co-ordinates of a 
general point in the frame of reference in which the container is stationary. Fluid 
is withdrawn from the container at  Q cm3/sec via certain permeable parts of the 
side walls and replaced at the same steady rate via other permeable parts of the 
side walls. As, by hypothesis, the vorticity of the entering and leaving fluid rela- 
tive to the container is zero, the concomitant fluid motion within the container, 
Eulerian velocity u = - V$ - V x A, is irrotational when the container is station- 
ary in an inertial frame. The present paper is concerned with the effects on u 
of uniform rotation of the whole system with angular velocity 8 about the 
z-axis when the normal component of u on the side walls is independent of z. 

In the simplest conceivable case, D = z, - zl is infinite (but D/Q remains finite). 
End effects are then negligible and u is everywhere independent of z. The solen- 
oidal component of u, - Q x A, corrksponds to j gyres, one for each of the j 
irreducible sets of circuits across which the net flow of fluid does not vanish that 
can be drawn within the m-ply connecbed region bounded by the side walls. While 
V$, which satisfies V2$ = 0, depends on Q but not on a, j and v (the coefficient 
of kinematic viscosity), Q x A  depends on all these quantities but vanishes 
identically when ja = 0. When ja $: 0 but v -+ 0 ,  V2A + 2S2, the absolute 
vorticity, tends to zero everywhere except in certain singular regions near 
the bounding surfaces, where boundary layers form. 

End effects cannot be ignored when D is finite. When D is independent of x 
and y and equal to Do (say) and is sufficiently large for the boundary layers on 
the end walls to be of the Ekman type, 95% thickness 6 = 3(u/sZ)* (8 < Do),  
the end effects that then arise are only confined to these boundary layers when 
j = 0. Whenj + 0 boundary-layer suction influences the flow everywhere; thus 
V2A and Vq5 (but not V x A) are reduced to zero in the main body of the fluid, the 
regions of non-zero Vq5 and V2A being the Ekman boundarylayers on the 
end walls and boundary layers of another type, 95 yo thickness A, (typically 
greater than 6), on the side walls. A theoretical analysis of the structure of 
these boundary layers shows that non-linear effects, though unimportant in 
the end-wall boundary layers, can be significant and even dominant in the side- 
wall boundary layers. The analysis of an axisymmetric system, whose side walls 
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are two coaxial cylinders, suggests an approximate expression for A,. Tilihen D 
is not everywhere independent of x and y, non-viscous end effects arise which 
produce relative vorticity in the main body of the fluid even when j = 0. 

Experiments using a variety of source-sink distributions generally confirm 
the results of the theory, show that instabilities of various kinds may occur 
under certain circumstances, and suggest several promising lines for future 
work. 

1. Introduction 
The work described in this paper began when I became interested in flows 

produced by various distributions of fluid sources and sinks in a rapidly rotating 
spherical shell of an incompressible fluid. I decided to investigate first a system 
that possesses many of the dynamical features of a spherical shell but is simpler 
to construct. The rigid container of the fluid was a right circular cylinder with a 
flat top and a conical base, and rotated about a vertical axis. One source and one 
sink were used, each shaped (effectively) like a long thin cylinder parallel to the 
axis of rotation. They were first placed at equal distances from that axis along a 
diameter of the cylindrical container, and later in other positions. The flows 
produced were striking and spectacular and conformed with general expecta- 
tions based on Proudman’s theorem (Proudman 1916) and the kheory of the 
divergent Ekman layer (see Charney & Eliassen 1949; Prandtl 1952), but I 
soon realized that their detailed interpretation and the extension of the experi- 
ments to more complicated systems would require, in the first instance, a fairly 
thorough understanding of simpler systems. It was with this goal in mind that 
the present investigation was undertaken. 

The conical base of the fluid container was replaced with a flat base. The flows 
that then occurred admitted of relatively straightforward interpretation, 
which pointed to the need to understand the vertical boundary layers on the 
surfaces of the sources and sinks. Although pertinent observations of these 
boundary layers were made, it became clear that their further study would be 
facilitated by changing to an annular arrangement, in which the source and the 
sink were coaxial cylinders. A fairly detailed study of annular systems was then 
carried out. 

2. Scope of the present work 
This paper comprises two main parts, a theoretical discussion followed by an 

account of the experiments. The theoretical discussion is pivoted about the 
properties of flows that are everywhere two-dimensional in planes perpendicular 
to the axis of rotation, but it is also necessary to consider in detail the effects 
on these two-dimensional flows of rigid walls a t  the axial extremities of the 
fluid. As a theoretical preliminary to the experiments, it is sufficient in this 
discussion of end effects to restrict attention t o  cases where the rate of rotation 
is so rapid that the end-wall boundary layers are of the Ekman type (Prendtl 
1952), characterized by a balance between Coriolis and viscous forces. In  dealing 
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with the side-wall boundary layers, however, it will be necessary ti0 extend the 
theory of Stewartson-type boundary layers (Stewartson 1957) to cases where 
the non-linear terms in the equations of motion are important. 

FIGURE 1. A general distribution of sources and sinks in a cylindrical container wit.h ‘IYL 

side walls gs (x ,  y) = 0, s = 1, 2, ..., rn (where m = 4). Impermeable surfaces are indicated 
by full lines and permeable surfaces by dotted lines when the surface is a source, and 
dashed lines when the surface is a sink (cf. figures 3 and 4). 

l’heor y 

The theoretical discussion ($0 3-5) may be summarized as follows. An incompres- 
sible fluid fills a container of fixed shape and size and of uniform cross-section 
in the (2, y)-plane, the surfaces occupied by the m rigid side walls, as illustrated in 
figure 1, and the two rigid end walls being gs(x, y) = 0, s = 1,2,  . . . , m, z = zu(z, y) 
and z = zt(x,  y), z, > z,, respectively. Here (x, y, z)  are the Cartesian co-ordinates 
of a, general point in the frame of reference in which the container is stationary. 
Fluid is withdrawn from the container at  Q cm3/sec via certain permeable 
parts of the side walls and replaced at  the same rate via other permeable parts 
of the side walls. 

By hypothesis, the entering fluid has zero vorticity relative to the container. 
Consequently, when the container is stationary in an inertial frame of reference 
the ensuing relative hydrodynamical motion of the fluid within the container 
is irrotational. That is to say the Eulerian velocity, u, though in general expres- 

(2.1) sible as u = -O#-V x A, 
47.2 
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is then such that - V x A, the solenoidal component of u, is zero. 4 is completely 
determined by the continuity equation, 

div u = 0 = - V2$, (2-2) 

solved under the boundary conditions that u . n is a specified function f at each 
point P of the walls of the container, where n is the outward-drawn normal at  P. 

I 

/ \ / 

FIGURE 2.  Examples of distributions of sources and sinks for which j ,  the number of 
irreducible setjs of closed curves across which the net flow of fluid does not vanish, is zero 
(see (3.16) and (3.17)). (a) ,  ( b )  and (c) represent the key to the distributions used in the 
experiments illustrated in figure 6 (see table 1) ; (d )  is any simply connected region (i.e. 
m = 1, cf. figure 1). 

When the container is not stationary in an inertial frame, - V x A is no 
longer in general equal to zero. If the apparatus rotates with uniform angular 
velocity SZ about the z-axis, then the equation of motion is 

(2.3) 

where t denotes time, p is the total kinematic pressure (i.e. pressure divided by 
density) minus the potential of gravitational and centripetal force per unit mass, 

au/at+ (u. V) u + 2 8  x u = - vp + vvzu, 
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and Y is the coefficient of kinematic viscosity. Take the curl of (2.3), and, on mak- 
ing use of (2.1) and (2 .2 ) ,  we find for the relative vorticity, 

the following equation: 
0 V X U  = V2A, (2.4) 

awlat + (u . V) o - vV2w - (w . V) u - 2Q au/& = - (2Q + w) div u = 0. ( 2 . 5 )  
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FIGURE 3. Examples of distributions of sources and sinks for whiclij + 0 (see (3.16) and 
(3.17)).  They represent the key to the distributions used in the experiments illustrated in 
figure 7 (see table 1, also figures 8, 9, 10, 12 and 13). m = 2, j' = 2 and j = 1 for (a ) ,  ( b )  
and ( d ) ;  na = 3, j' = 2, j = 2 for (c) (see (3.11) and (3.12)).  

w = 0 satisfies ( 2 . 5 )  when Qaaujaz = 0, so that when Q + 0, u is only irrotational 
when aujaz = 0 and the boundary conditions are independent of !2 (see Taylor 
1917). Otherwise o + 0 in general when !2 + 0. 

Strictly two-dimensional flows (i.e. au/az = 0) are treated in $3.  Such flows 
arise when f is independent of z and 

(2.6) B = 2, - Zl 
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is infinite (but Q/D remains non-zero), so that end effects are negligible. It is 
shown bhat the solenoidal component of u corresponds to j gyres, one for each 
of the j irreducible sets of closed curves that can be drawn within the m-ply 
connected region bounded by g,(x, y) = 0 , s  = 1,2 ,  . . ., m (the cross-section of the 
container in the (z,y)-plane, see figures 1-3) across which the net flow of fluid 
does not vanish. It follows, therefore, that V x A = 0 everywhere in the special 
case j = 0 (see figure 2). 

While Vq5 is the same as in the non-rotating case, V x A depends on Q as well 
as on Q, and when v tends to zero and the flow is steady (andj =I= 0)) 

o E V2A = ( 0, 0, a;; -'+---z a;) = (0, 0, - 2Q) ( 2 . 7 ~ )  

and V(p++u.u) = 0 (2 .7b)  

within the main body of the fluid, but not in certain singular regions, where 
boundary layers form. (An exact solution for steady, axisymmetric (but v + 0) 
flow is given in the appendix.) In the special casej = 0, in place of (2.7) we have 

V2A = V x A  = 0 and V(p+$,1.u)+2S2xu = 0. (2.8a, b )  

End effects can be very important in practice, and it is necessary, therefore, 
to examine in $54 and 5 the theory of such effects on the strictly two-dimensional 
flows discussed in $3. Purely viscous end effects arise when D is finite but inde- 
pendent of x and y and then equal to D,, say. It is assumed for convenience that 
Q is so large that Che viscous boundary layers on the end walls are of the Ekman 
type, 95 yo thickness 

(see Prandtl 1952). Only when j = 0 are viscous end effects confined to these 
Ekman layers. Otherwise, when j + 0, Ekman-layer suction exerts a radical 
influence on the flow everywhere. Thus Q2A and Vq5 (but not V x A) are reduced 
to zero in the main body of the fluid, the regions of non-zero Vq5 and V2A being 
the Ekman boundary layers on the end walls and boundary layers of another 
type, 95 yo thickness A,, that then occur on the side walls. 

A theoretical analysis of the structure of these boundary layers is presented in 
$ 5 ,  where it is shown that non-linear effects, though unimportant in the Ekman 
layers, can be significant and even dominant in the side-wall boundary layers. The 
analysis of an axisymmetric system, whose side walls are two coaxial cylinders, 
suggests that 

taking the upper sign for the boundary layer on the cylinder via which the fluid 
enters the container, the source, and the lower sign for the boundary layer on the 
other cylinder, the sink, where 

&= 3(v/Q)4 (2-9) 

A, = J3SBD%[( 1 + ax:): k +X,]/d2, (2.10) 

X ,  z &,I3 J2LSD, ,~v%Q~,  (2.11) 

a dimensionless parameter, L, being the perimeter of the side wall and Q, the 
rate of transfer of fluid across it. Thus 

A, + 3viD$/42Qi (source and sink) when X ,  < 1 (2.12 a )  
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but 

A, = &/2L,uhQh (source), A, + 9DLsvl&, (sink) when X ,  9 1. (2.12b) 

In  contrast to the case of constant D ,  non-viscous end effects arise when 
D is not independent of x and y; and when the range of variation of D greatly 
exceeds (u/Q)&, viscous end effects are negligible in comparison. Of particular 
interest is the case j = 0; V x A and VZA no longer vanish when non-viscous 
end effects are present. 

Experiments 
The experimental part of the paper begins with a brief discussion of apparatus 
and techniques ($6).  This is followed by accounts of experiments with systems 
subject first to viscous end effects ($7) and then to non-viscous end effects 
($ 8), using various distributions of sources and sinks, notably those illustrated 
by figure 2, for which j = 0, and figure 3, for which j + 0. The experimental 
results are consistent with the theoretical predictions, show that instabilities 
of various kinds may occur under certain circumstances, and suggest several 
promising lines for future theoretical and experimental work. 

3. Strictly two-dimensional flows 
Let us first consider flows that are everywhere strictly two-dimensional in 

planes perpendicular to the rotation axis (i.e. 2u/ax = ap/az = 0). Such flows 
occur when f ( P )  (see (2.2)) is independent of x ,  and when D, the depth of the 
fluid, is infinite (but 

q = &ID (3.1) 

is non-zero). We impose no restriction at this stage on the value of Q. 
In general, the boundary conditions are as follows: 

v(u x n) = 0 on (a )  g,(x, y) = 0 (s = 1 ,2 ,  ..., m ) , ~  

and on ( b )  z = xu(x,y) and z = xI(x, y ) , l  (3.2a, b )  

u . n  = f ( P )  on g,(x, y) = 0 (s = 1 ,2 ,  ..., j‘), ( 3 . 3 4  

and u.n  = 0 on x = z,(x,y) and z = x l (x , y ) ,  (3.3c) 

u .n=O on g,(z ,y)=O ( s = ( j ’ + l ) , ( j ’ + 2 )  ,..., m), (3.3b) 

where n is the outward-drawn unit normal at the general point P on the side 
wall. Equations (3.2) express the requirement that the tangential component of 
u must vanish on a rigid surface (the ‘no-slip’ condition) when v += 0. Equations 
(3.3) state that the normal component of u must vanish on the completely im- 
permeable side walls numbered (j’ + 1) t o  m and on the impermeable end walls 
in x = xu and z = 4, and thaC u . n is a specified quantityf(P) at  each point on the 
other side walls, numbered 1 toj‘ (see figures 1-3). 

Clearly f ( P )  satisfies 
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where da is an element of area at  P and each integral is taken over the whole 
surface defined by gs(x, y) = 0. 

As we are dealing here with flows that are independent of x we can set the 
z component of u( = (u, v, w)) and the z and y components of A( = (Ax, A,, A,) )  
equal to zero, see (2.1). Equations (2.3), ( 2 . 2 ) ,  (2.4) and (3.5) then reduce t o  

(ajat - 110:) (k x V, A,) + (as2 + Vt A,) (V1# x k - %‘,A,) = - Vlp*, (3.5) 

V?# = 0,  (3.6) 

(3.7) 0 = (<,??>C) = ( o , o , v : 4  

and 

and (3.10) 

(i, j, k) being unit vectors parallel, respectively, to the x-, y- and z-axes. The 
boundary conditions (3.2) reduce to 

v(uxn) = 0 on gs(x,y) = 0 (.s = 1,2, . . . ,m) (3.11) 

} (3.12) 

and 
-n.V,r$ = f ( P )  on g,(x, y) = 0 ( s  = 1,2,  ..., j’), 
- n . V l #  = 0 on gb(x,y) = 0 ( s  = (j’+ l ) , ( j ’ + 2 ) ,  ..., m). 

When Q = 0 ,  (3.5)-(3.12) are satisfied by 

VIA, = 0, (u,’u) = -V,q5, V1p* = 0. (3.13) 

Equation ( 2 . 5 )  indicates that there may be circumstances in which u remains 
irrotational (i.e., VIA, = 0) even when Q + 0, and we now proceed to examine 
this point by setting V,A, = 0 in (3.5), which then reduces to 

V,p* = ZQk x Vl# (whenV,A, = 0). (3.14) 

Take the line integral of equation (3.14) around any closed curve @ that every- 
where lies within the fluid and in the (x, 9)-plane and find 

fVVlp* .dc  = 2s2 ( k x V , $ ) . d c  (when VIA, = O ) ,  (3.15) 

where dc is an element of length of 59. Asp*  and # are single-valued functions of 
position it follows from (3.15) that 

VIA, = 0 when 2QZ6 = 0 for all possible %, (3.16) 

where .Ef = (k x V,r$).dc (3.17) 

(see Barcilon 1967; Hide 1966, 1967). 
9& is the net flow of fluid across the closed curve %. Denote by j the number of 

‘irreducible sets’ (see Lamb 1945, p. 49) of such curves for which 2Eq $: 0; it  
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follows from (3.16) that k x VIA,, the solenoidal component of u (see (2.1)), 
vanishes when j = 0,  as in the cases illustrated by figure 2 ,  but not when j + 0, 
as in the cases illustrated by figure 3. 

j depends on the connectivity m of the cross-section of the container in the 
(x, y)-plane and on the form of f(P); it is obvious that j 6 j '  (see (3.3)). m = 1, 
j' = l a n d j  = Oforfigures2a,candd;m = 2,j' = l a n d j  = Oforfigure2b;m = 2 ,  
j '  = 2 a n d j  = 2 for figure 3c.  

When j + 0,  the source-sink potential flow interacts with the basic rotation to 
produce j gyres of non-zero relative vorticity, V: A,, one surrounding each bound- 
ing surface through which the net flow of fluid does not vanish.? Observe that 
when v = 0 and the flow is steady, 

V:A,  = -2Q, V,p* = 0 (j  + 0 ) ;  (3.18) 

the corresponding results when j = 0 are 

V, A,  = V:A,  = 0, Vlp" = - 2Qk x Vl$ (j = 0) (3.19) 

(cf. (3.13), (3.14), (2.7) and (2.8) above, also (A4) and (A7) below). 
When the flow is steady and axisymmetric (see figure 3 n ) ,  an exact solution to 

(3.5)-(3.12) can be readily obtained, even when u + 0. The case illustrated by 
figure 2 a can also be treated with ease when Y is so small that its effects are con- 
fined to boundary layers on the radial connecting wall. These problems are 
considered in the appendix. There should be no difficulty involved in extending 
the analysis there presented to simple cases of non-axisymmetric flows, such 
as those due to source-sink arrangements given in figures 2 b, 2 c and 3c .  

4. End effects 
The extent to which the strictly two-dimensional flows discussed in 0 3 would 

be expected to resemble the actual flows that occur when the depth, D = z, - xl 
(see (2.6)), of the container is finite depends on anumber of factors, which we shall 
now consider. 

The boundary conditions that u = 0 on x = z , ~  and z = zl must now be taken 
into account (see ( 3 . 2 b )  and (3.3~)). Suppose that viscous boundary layers of 
thickness d, and d,, both much less than D, occur on the end walls in z = z,  and 
z = zl, respectively. Also assume that the unit vectors normal to the end walls, 
respectively n, and nl, where 

n,,,(x,y) = V(z,1(x,y)-x)/jV(z,,,(x,y)-x)I, (4.1) 

make such small angles, cos-l (k.  n , , ) ,  wibh the z-axis that second- and higher- 
order effects in these angles can be neglected. (In the experiments cos-l(k. nu) 
was always zero and cos-l (k.n,) was either zero or f m/18 radians (i loo), see 
table 1 .) 

t When the fluid is not incompressible the term 2nV.u in (2 .5)  ensures that V;Aa + 0 
even when j = 0. Dynamical effects of finite compressibility are usually negligible in 
laboratory experiments with rotating fluids, but they are certainly very important in 
hypersonically-rotating fluids, such as the atmospheres of the major planets and rapidly 
rotating stars (see Hide 1963). 
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By equation (2.5), {satisfies 

which only reduces to (3.8) when au/az = 0. Denote by 

ii = (U, E, W) and Q = ( E , ? j ,  <) 

the values of u = (u, v, w) and w = (<, 7,<) just outside the end-wall boundary 
layers. At this stage we make use of the fact that in all but one of the experiments 
described below (see §§6-8) Q was so large that 

IGl 4 2 Q  and 121 4 2QQ (4.3a, 6) 

and we introduce the further assumptions, which can be justified aposteriori, that 

(4.4a) 

(4.4b) 

and that U, V and aEj8x are independent of z ,  the last quantity being given by 

(4.5) 
iiu! 
._ = (w(2 = 2,-d,) -w(x = zl+d,)} /D(x,y) .  
a2 

When (4.3) are satisfied, the end-wall boundary layers are of the Ekman type 
in which the motion parallel to the wall varies from zero at  the wall to 95 yo of 
its value in the main body of the fluid at  a distance 3(v/!2k. n)4 cm from the wall. 
It is a straightforward application of the theory of the Ekman boundary layer 
(Prandtll952) and (4.1) to show that the term in curly brackets on the right-hand 
side of (4.5) is equal to ii.V,D(x, y)-(v/SZ)*[; hence, by (4.2) to (4.5), [satisfies 

We shall use this equation as a basis for the following discussion of end effects. 
ii and ;ij can be regarded as the x- and y-components of velocity of a fluid 

filament at  (x, y) that everywhere lies parallel to the z-axis, and [ is the z-com- 
ponent of vorticity of that filament. The right-hand side of (4.6) measures the 
rate of change of < of a moving filament due to axial stretching of the filament. 
The viscous contribution to the stretching process, proportional to (v /Q):  c, is 
due to Ekman boundary-layer suction; the non-viscous contribution, propor- 
tional to 6. V,D(x, y), is due to variations of D with x and y. 

When j = 0 (see figure 2), the strictly two-dimensional flows discussed in 
$3 are irrotational (i.e. < = 0, see (3.16)). Such flows satisfy (4.6) automatically 
when D is constant (i.e. when V,D(x, y) = 0). Consequently end effects, which 
are then purely viscous, are confined to the Ekman layers and the flow else- 
where is unaffected by the presence of the end walls (cf. figure 6). At the other 
extreme, when 16. V,D(x, y)I 9 I (v/SZ)* [I, the purely non-viscous end effects that. 
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then arise affect the flow throughout the main body of the fluid. ii. V, D(x, y) 
tends to zero nearly everywhere when (4.3) and (4.4) are satisfied, the correspond- 
ing filament trajectories being such that D(x, y) remains constant along them (cf. 
figures 12 b, c). Exceptional regions are concomitant side-wall boundary layers 
in which some of the other terms in (4.6) are non-zero, so that ii. V, D(x, y) is also 
non-zero (cf. figures 12b and c) .  (The Gulf Stream and the low-level atmospheric 
jet stream off East Africa are probably geophysical examples of such boundary 
layers.) 

In  contrast to the casej = 0, whenj + 0 (see figure 3) the strictly two-dimen- 
sional flows discussed in $3 are not irrotational (i.e. 5 $1 0, see (3.16)). By (4.6), 
therefore, the flow in the main body of the fluid is then influenced by viscous 
as well as non-viscous end effects. The ratio of the thickness of the end-wall 
boundary layer to the range of variation of D(x,  y) is a measure of the relative 
importance of viscous to non-viscous end effects; in what follows next we shall 
ignore the latter and consider only the former. 

Figure 4 illustrates how purely viscous end effects can modify strictly two- 
dimensional flows when j + 0 (see also figure 3). Boundary-layer suction re- 
distributes the irrotational and solenoidal components of u in a manner illustrated 
by figures 4 a  and 4b respectively. 

The flow is best considered by splitting the meridional cross-section into five 
regions: the interior region, the two Ekman layers, the boundary layer on the 
surface of the source, and the boundary layer on the surface of the sink. The 
transfer of fluid from source to sink now takes place via these boundary layers, u 
in the interior region being such that 

The last equation is obtained by matching the flow in the interior to that in the 
Ekman layers (Prandtl 1952), where the average (with respect to z )  flow has the 
same form as the corresponding irrotational flow that would occur in the absence 
of end walls, but is D0/2(v/Q)* times as rapid, where Do is the uniform distance 
between the end walls (see figure 4). 

Axial motion is confined to boundary layers of thickness AE and A, respec- 
tively on the source and sink. Inspection of (4.6) (when applied to the case now 
under discussion, namely V,D = 0) suggests that, when non-linear terms such 
as iiaQay can be ignored (and the flow is steady), both AE and AK are of order 
v*Do*/Q* the Stewartson (1957) thickness; but when non-linear terms cannot be 
neglected, AE and A, are determined by two length scales, OD,/(vQ)& (cor- 
responding to a balance of the non-linear terms with the right-hand side of (4.6)) 
and v/O (corresponding to a balance of the non-linear term with vVZ,<) where 0 
is a typical relative flow velocity, of order IV,A,I in this case. The final theoretical 
preliminary to the experiments described below in $5 6-8 will be to investigate as 
carefully as possible the dependence of AE and A,, the thicknesses ofthe side-wall 



748 

2 

1 

0 

--I 

R. Hide 

Interior -+- -----L( 

1/2!2 

FIGURE 4. The effect of end walls in z = 0 and z = Do on flows due to distributions of 
sources and sinks for which j + 0, see figure 3. (a)  shows the projection of streamlines on 
an arbitrary surface that evcrywhere lies parallel to !2 and intersects the surfaces of the 
source and of the sink in the heavy dotted and dashed lines respectively (cf. figure 1). 
(b )  shows the corresponding variation of relative vorticity, [, across the same surface in 
regions remote from the end-wall boundary layers. The lightly dashed line corresponds 
to the case when end-walls are absent, the full lines when end walls are present. When 
1 Q/27rD0 v 1, a Reynolds number R, is much greater than unity (see (A 3)), [ in the absence of 
end walls is very close to - 2.Q everywhere except within a boundary layer of thickness 
proportional to R-l on the sink, where 6 attains positive values of order RQ (cf. (A4) and 
figure A l ) .  Suction due to the Ekman boundary layers, 95 % thickness 3(v/.Q)h, that occur 
on the end walls reduces V,$ and 5 to zero in the interior region (cf. (2.1) and (4.7)),  and 
gives rise to axial motion in boundary layers of thickness A E  and AK on the surfaces of the 
source and sink (see (5.11)). 
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boundary layers, on the external parameters, over that range of parameters 
for which the end-wall boundary layers have the Ekman thickness, 6 = 3(v/Q)* 
(see (2.9)).  

5. Side-wall boundary layers 
A complete theory of the detailed structure of the side-wall boundary layers 

lies beyond the scope of this paper, although the following analysis might ulti- 
mately prove useful as a starting-point. We restrict attention here to an axi- 
symmetric annular system (see figure 3 a ) ,  i.e. 

(5.1) 

(see (3 .3 ) ) ;  the corresponding flow in the absence of end effects is that described 
by the exact solution presented in the appendix. Then, the azimuthal components 
of the equations of steady motion and the equation of continuity reduce to 

1 f ( P )  = &/2naD, on g,(x,y) = (x2+y2-a2) = 0, 

f ( P )  = &/2;rrbD, on g,(x, y) = (x2 + y2 - b2) = 0, 

m = 2,j' = 2 , j  = 1 

and 

( U ,  V ,  W )  being, respectively, the radial, azimuthal and axial components of 
u at a general point with cylindrical polar co-ordinates (r ,O, x )  (see (2.3) and 
(2.2)).  The problem simplifies further when 

AE B 3(v/Q)4 and A, 9 3(v /Q)* ,  (5.4) 

because the Ekman layers on the end walls (see (2.9)) are then much thinner than 
the boundary layers on the side walls and may therefore be assumed to extend 
well into the corner regions (see figure 4). 

Under the foregoing simplifications, and the additional one that the side-wall 
boundary-layer thickness, AE or A,, is much less than the corresponding radius 
of curvature of the side wall, ct or b as the case may be, we can write 

and 

as approximate expressions for Ur and Vr  (cf. (3 .3)  and (4.7)), supposing that the 
inner cylinder is the source and the outer cylinder the sink. (For the correspond- 
ing expressions when the source and sink are reversed, interchange AE and A, 
in (5.5) and replace Q by - Q . )  



750 R. Hide 

All the exponential terms in (5 .5)  vanish in the interior regions, where 

U = 0, VY = - & Q * / ~ T v * .  (5-6) 

The terms involving (z - 2%) and ( x l  - x )  represent the exponentially damped 
axial variations in the Ekman boundary layers on the end walls. The maximum 
error due to neglecting non-linear terms in the equations of motion for the Ekman 
layer (see ( 5 . 2 ) )  is of the order of a Rossby number 

6 = Q/2nv*Q*a2 (5 .7 )  

based on the azimuthal flow in the interior and on a. The terms involving ( r  - b )  
and (a--r) represent the radial variation in the side-wall boundary layers, as- 
sumed for simplicity t o  be exponential, with no oscillations. At r = ( a + A E )  
and r = (b-A,) (and x well outside the Ekman layers), lUrl is only 0.05 
( =  exp ( -  3)) of its value at  the neighbouring boundary, r = a or r = b, and 
I Vrl has risen to 0.95 ( = 1 - exp ( - 3 ) )  of its interior value (see figure 4) given by 
(5.6). As we shall see below, even when E < 1 non-linear terms cannot be ignored 
in the equations governing the flow in the side-wall boundary layers unless the 
dimensionless parameter 

(with a similar expression for xb) is much less than unity (cf. (2.11)). 

X ,  = &/6n-J2aD$v%l& ( 5 4  

By (5 .3) ,  the continuity equation, and ( 5 . 5 a ) ,  

where G(r) ,  which vanishes on r = a and r = b, has been introduced in order to 
satisfy the no-slip boundary condition ( 3 . 2 a ) .  As the term involving V in (5 .2 )  
can safely be neglected when V is of the form given by (5 .5b) ,  we can evaluate 
AE and AK under the assumptions made above without having to discuss G(r).  
(Suffice it to remark here that, when X 4 1, the boundary-layer substructure 
represented by G(r)  is characterized by the length scale Di v%/ Q%, which is less 
than AE and A,, then of order D$vg/Q* (see (5.14b), also Lewellen 1965; Rott 
& Lewellen 1966; Proudman 1956; Stewartson 1957). The determination of this 
substructure when X 

Now substitute (5.5) in (5.2) and find for the dimensionless measure of A, 
1 is a significant unsolved problem.) 

(5.10) 

the following equations: 

(5.11) 

The dimensionless parameter X ,  or xb (see (5.8)) measures the ratio of the 
magnitude of the non-linear term in (5 .2 )  to that of the viscous term. It is a Rossby 

2;; - 3X,Z, exp [3(a - .)/A,] - 1 = 0, 

Z& f 3XbZK eXp [3(r  - b)/A,] - 1 = 0. 
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number based on the speed of azimuthal flow in the interior (see (5.6)) and on the 
Stewartson (1957) thickness 3v@$/42 c;2$; it is also a Reynolds number based on 
the speed equal to one-ninth of U a t  the side walls and on the Stewartson thick- 
ness. When non-linear effects are negligible we can set X u  = X ,  = 0 in (5.11), 
which then have (acceptable) solutions 2, = 2, = 1. Hence, and in agreement 
with an analysis of the linear case by Lewellen (1965), both side-wall boundary 
layers then have the Stewartson thickness. 

The non-linear case is of greater interest in connexion with the experiments. 
Approximate the exponential term in each of (5.11) by 0.333, its average value 
over the range of r for which the term exceeds 0.05, and thus find 

1 Z&X,Z,- 1 = 0, 

Z&+X,Z,- 1 = 0. 
(5.12) 

The acceptable solutions of these equations, namely 

2, = (1 + *x:p + *xu, (5.13 a) 

2, = (1 + +x;p - gx,, (5.13 b) 

are such that 2, = 2, = 1 when X u  = x, = 0; and 2, = X u  and 2, = Xgl 
when X u  B 1 and X, >> 1. 

Equations (5.13) are illustrated in figure 5 ,  which shows that A, increases 
and AK decreases with increasing X ,  the asymptotic expressions for these 
quantities being 

I A, = when X ,  + 1, 
4rruviQh 

(cf. the closing remarks of $4),  which should be compared with 

A, = 3v&@/y/2C2& when X u  < 1, 

A, = 3v*Dt/2/2 Qi when X, < 1. 

( 5 . 1 4 ~ )  

(5.14 b )  

The interpretation of ( 5 . 1 4 ~ )  is straightforward. In  the boundary layer on the 
source, thickness A,, viscous forces are negligible when X u  9 1, implying con- 
servation of angular momentum, as expressed by the balance 

2Q + r-la(Vr)/ar = O 

(see (5.3)). Non-viscous forces are capable of bringing about the change in the 
solenoidal component of velocity (namely 17 in this axisymmetric case) that 
a particle must experience in passing from the surface of the source, where 
V is zero, to  the other side of the side-wall boundary layer, where V is non-zero 
(and negative in the case under discussion, see figure 4 and (5.6)). v enters the 
expression for A, (as v-4) only through the requirement that in the corner regions 
(see figure 4) u in the boundary layer on the side walls must match u in the Ekman 
boundary layers on the end walls. 

As a fluid particle traverses the boundary layer on the sink, thickness A,, 
it must experience an increase in azimuthal velocity if V is to  vanish at  the wall. 
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Because non-viscous forces can only produce a decrease in V ,  A, must be suffi- 
ciently small for viscous forces to attain sufficient strength to bring about the 
required increase in V .  Ur-l a( Vr)/ar = va(r-la( Vr)/ar)/ar is then the essential 
balance of forces in (5 .2 ) ,  the corresponding value of A, being proportional to v/Q 
and independent of (see ( 5 . 1 4 ~ ~ ) ) .  

X 

FIGURE 5. The dependence of AE (upper curve) and AK (lower curve) on Q (cf. figure 4). 
2 is a dimensionless measure of AE or A, (see (5.10)). X = Q/3,/2L,D$ugR~ is a dimen- 
sionless measure of Q and thus measures non-linear effects (see (5.8)). The equations of 
the upper and lower curves are 2 = (1  + $X2)* k &X respectively (see (5.13)) ; their ranges 
of validity are given by (5.15)-(5.17). 

When the flow in the system is directed radially inward rather than outward 
(cf. figure 4), ( 5 4 ,  (5.6) and (5.9) still hold for li, V and W if we write -Q for 
Q, and (5.10) to (5.13) holdforZ,andZEifweinterchangeX, andX,. Equations 
(5.10)-(5.13) bring out the essential non-linearity of the system for, except when 
X < 1, reversing the direction of flow through the system changes the character 
of each side-wall boundary layer. 

It will be important to extend the foregoing analysis to non-axisymmetric 
systems. The basic lengths will still be the same as those given by the right- 
hand sides of (5.14), but the dependence of AE and A, on these lengths will, 
in general, differ from (5.14), except when X < 1. 

Range of validity of equations (5.13) 

The use in ( 5 . 5 )  of exponential functions for describing the r dependence of ( U ,  V ,  
W )  is unlikely to be valid except when 

A,<a and A , < b ,  (5.15) 
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FIGURE 6. Three examples of flows due to source-sink distributions for which j = 0, the 
key to the arrangements of sources, sinks and impermeable surfaces being given, in 
order, by figures 2a, b and c. Each photograph was taken several minutes after dyed 
fluid first entered the system via the source. In  each case, notwithstanding the rapid 
rotation of t'he whole apparatus, at  speeds of over lo3 times the typical speeds at, which 
fluid passed through the working region, u was virtually unaffected by rotation. (The 
dye pattern in (a)  is the result of entirely radial motion on an initial dye distribution which 
possessed azimuthal variations.) Ekman layers were present, presumably, on the end walls, 
but they were too thin to have produced visible effects in these photographs. (Depth D 
uniform ; for full experimental details see table 1 and 6 arid 7. 

HIDE (Faczng p .  7 5 2 )  
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FIGVRIC 7. Foiir rxainples of flows duc to source- sink distrihitions for which j # 0, the 
key t,o the a,rranpcment, of sources arid sinks arid irnpermcable surfaces being given, 
in order, by fignres 3a- r J .  Kach photograph was taken screral minutes after dyed fluid 
first enterod the system via t l r c  soiirce. The gyres present i n  each case indicate directly 

t,o the case ,j = 0, when j + 0 u in the nxtin body of the fluid depends on 
6 2 .  Morcover, effects duo t>o viscous Ekman boundary layers on the crid walls profoundly 
irifluence the flow in t;he main body of the  fluid in t.hc manner illust,rated by figtire 4 
(see figure 8 ) .  (Depth D uniform; for full experimental details see table 1 and $56 a r i d  7.) 

HIDE 
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FIGURE 8. Further details of the flow illustrated in figure 7c. In  (a)  and (6) fluid was in- 
troduced and withdrawn from the working region via two short tubes, the source being on 
the left in each case. Both pictures indicate that axial motion occurs only in the vicinity of 
the sourcc and sink. In ( b )  dye produced by a crystal of nigrosine placed on the floor on tho 
tank gavc rise to the curved streaks in the direction of the mean flow in the bottom 
Ekman layor (cf. figure 4). The third picture, ( c ) ,  which should be compared with figure 7 c  
(see also figures 8 a  and S b ) ,  shows that the flow is unaffected by the introduction of a 
rigid impermeable barrier a t  the boundary of contact between the two gyres in the 
‘interior’ rcgion (provided that the comhincd width of the gaps that wcre left between 
burrier and the end walls in z = 0 and z = Do, though much less than Do,  was not too 
small, i.e. not less than the Ekman-layer thickness, 3(v/R)h). The fourth picture, (d).  
indicates the pattern of flow in the Ekman layer on the end wall, as revealed by the crystal 
violet etching technique described in 5 6. (See table 1 for full experimental details.) 

HIDE 
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cm 
r 

FIGURE 9. Ohswvations of the azimuthal component of the flow due to an annular soiirce- 
sink arrangerncnt illustrated by figure 3a (cf. figures 7 u  and 10a). ( a )  is a photograph of 
dye streaks released from equally spaced points on a thin (0.004 in. diamet,er) copper 
wire, using thc iodinc-st.srch tcchniyue described in 3 6. The points in ( h )  are basod on 
determinations of Vr froiii several photographs such as (a ) ,  arid the line is a theoretical 
curve based on (5.5b),  with A, and A K  given by (5.10) and (6.13). (Depth D uniform; see 
table 1 for fill1 experimental details.) 

HIDE 
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and we can expect quantitative errors from this procedure and from the aver- 
aging procedure leading from (5.11) to (5.12). Equations (5.13) must break down 
qualitatively when non-linear effects in the end-wall boundary layers, in magni- 
tude of order E times the linear effects (see (5.7)), cannot be neglected; this con- 
sideration restricts the range of validity of (5.13) to values of Xu satisfying 

(5.16) 

The assumption that the side-wall boundary layers are thicker than the Ekman 
layers on the end walls (see (5.4)) requires that 

(5.17) 

The last two restrictions are by no means prohibitive; while the typical 
values of the right-hand sides of (5.16) and (5.17) may greatly exceed unity, the 
largest value of X attained in the experiments was 2.2. 

This completes the theoretical part of the paper, and we are now in a position 
to present the experiments. 

6. Apparatus and techniques 
The main apparatus consisted of a cylindrical Perspex (Plexiglas) tank of 

inside diameter 30 cm, constructed in such a way that the permeable and im- 
permeable bounding surfaces of the ‘working region’ of the fluid (see figures 2 
and 3) in the tank could be changed without too much difficulty. 

The tank was mounted on a horizontal turntable with its vertical axis coinci- 
dent with the rotation axis of the turntable. The turntable was driven with 
angular speed Q, usually between 1 and 4rad/sec (see table l) ,  by means of a 
continuously variable speed motor and gear-box arrangement. Q was deter- 
mined to better than 0-5 % by means of an electronic timing device actuated by 
the pulse generated once per revolution of the turntable when 6he beam from 
the lamp mounted on the turntable fell onto a photocell fixed in the laboratory. 
Variations in i2 never amounted to more than 1 yo over periods of several hours. 

The ‘working region’ of the rotating tank formed part of a circuit through 
which fluid passed a t  a constant rate, Q, typical values of which were between 
0.45 and 2.27cm3/sec. After some preliminary trials, a system that proved 
successful consisted of a ‘constant head ’ tank, capacity 40 1, mounted about 2 m 
above the working region, from which fluid passed under gravity to the working 
region via a shut-off valve, a 10-turn needle valve, a f manostat-Predictability ’ 
flowmeter, a motor-actuated ball-float mechanism, and a second shut-off valve, 
all connected in series. With this arrangement fluctuations in Q never exceeded 
2% and were usually much less. The error in the determinations of Q ranged 
from 0.5 yo at the highest values used to 2 yo at the lowest values (see table 1). 

Water was the fluid used in all the experiments reported below. Although 
the viscosity of water depends strongly on temperature, by controlling bhe 
ambient temperature as carefully as possible, variations in v during any single 
experiment were kept under 1 yo. 

48 Fluid Mech. 32 
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Excepting the case illustrated by figure 13c (see also table 1) (for which !2 
was much less, by at  least an order of magnitude, than in the other experiments, 
the corresponding value of the Ekman number, 

y f v p D ,  (6.1) 

B being the average value of D(z,  y), and that of the Rossby number F (see (5.7)) 
being, respectively, 10W and 1 approximately), typical values of y and 6 were 
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1 The 'key' number is that of the figure illustrating the source-sink arrangement used. 
2 The number gives the radius of curvature of the surface of the source or sink (as the 

case may be) in centimetres. The letter indicates the method of construction of the source 
or sink, thus: A, projecting tube; B, sintered brass; C, perforated Perspex cylinder; D, 
perforated Perspex cylinder filled with glass beads; E, perforated Perspex cylinder sur- 
rounded by gauze and filled with plastic foam; B, perforated aluminium cylinder. 

3 Depth D (see (2.13)), uniform; dz,/dr = dzl/dr = 0. 
Depth non-uniform; dz,/dr = 0, tan-l (dz,/dr) = 10". 
Depth non-uniform; dz,/dr = 0, tan-1 (dz,/dr) = - 10'. 
Key to flow visualization technique used is as follows : n, nigrosine; p, phenolphthalein 

pH indicator; v, crystal violet etching; s, iodine-starch electrolyte technique (see 3 6). 
' Figures 6b and 8d were included in a recent review paper (Hide 1966). 

TABLE 1 
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always a good deal less than unity. These values can be readily calculated from 
the data given above and in table 1, which summarizes the conditions of the 
experiments illustrated by the various photographs of flow patterns presented in 
figures 6-13. 

During the course of the work, experience was gained in the design of per- 
meable surfaces via which fluid could be introduced into and withdrawn from the 
working region. Owing to the high values of Q and low values of Q used in the 
experiments, injection or withdrawal of fluid via a hole in one of the end walls 
or at  the end of a narrow tube projecting into the working region was sufficient for 
qualitative investigations, and this method was employed during the early 
stages of the work (see figures 8a-c). Owing to the constraints of rotation, on 
entering the working region fluid would spread out much more rapidly in the 
axial direction than in the transverse directions, forming, effectively, a cylin- 
drical source of somewhat larger transverse dimensions than the diameter of the 
hole. Similar effects, which are clearly seen in figure Sa,  arose in the exit region. 
Although these effects are of interest in themselves (see Herbert 1965; Rott & 
Lewellen 1966; Barcilon 1967), we shall not consider them further here. 

When it was necessary to know the exacb dimensions of the ‘working region’ 
various types of rigid permeable materials were used, such as sintered brass 
tubing (used in motor-car petrol filters) (see figures 6c,  7c ,  d,  8d)  and perforated 
Perspex or aluminium covered with thin wire mesh or cotton gauze. Axial 
variations in effective porosity were minimized by forcing the fluid to pass 
through glass beads (see figures 7 a ,  b,  10a-f, 13c) or, better still, sponge or ex- 
panded plastic foam (see figures 12a-c, 13a, b )  just before (after) entering (leav- 
ing) the working region via the surface of the source (sink). (Rigid, porous, 
machinable plastics are being used in an extension of the present work.) 

Several flow visualization techniques were used during the course of the experi- 
ments. One of these involved colouring the fluid with a neutrally buoyant dye 
(nigrosine in water and alcohol (see figures 6a-c, 7a-c, Sa-c, lOa-f, 12a, b,  
13a-c) or fluorescein) as it approached the working region. Another technique 
involved bhe production of dye at  an electrode which either formed one of the 
bounding surfaces of the working region or was a taut, thin wire placed within 
the fluid (see figures 9 a  and E d ) .  The fluid was rendered electrically conducting 
by the addition of a small quantity of potassium iodide. By also adding a small 
quantity of starch, dye, in sufficient quantity to give a visual indication of the 
flow without disturbing it, could be produced by applying a d.c. voltage across 
the electrodes for about a second. 

Yet another technique involved detecting, by means of the indicator phenol- 
phthalein, changes in pH of the fluid in bhe working region resulting from the 
introduction of small quantities of an aqueous solution of calcium carbonate and 
ammonium hydroxide into the fluid circuit upstream of the working region (see 
figures 7d and 12c). 

One of the pictures reproduced below (figure 8 d )  was obtained by means of a 
novel technique developed during the course of the present work. The surface of 
the end wall was painted with ‘ Krylon ’ spray acrylic paint. When the paint had 
dried, the surface was rendered matt by rubbing it with cotton soaked in alcohol, 

48-2 
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which apparently removed the paint filler. In this condition, as was found more or 
less accidentally by my assistant, Mr Bernard Gray, the matt surface was readily 
stained by crystal violet dye. On introducing crystal violet dye into the fluid, the 
pattern of dye in the fluid near the end wall, which was determined by the flow 
pattern there, gave rise to a similar pattern on the painted surface. 

The camera used to obtain the photographs presented in figures 6-13 pointed 
either exactly or approximately in the direction of the negative z-axis, the sense, 
as seen in the diagrams, of the basic rotation being counter-clockwise in all cases. 
The upper surface of the working region was always plane and horizontal. The 
lower surface was plane and horizontal in all the experiments excepting those 
illustrated by figures 12a-d, 13a and b, when the bottom sloped at 10" (figures 
12a, b, 13a, b)  or - 10" (figures 12c, d )  to the horizontal. 

7. Experiments with containers of uniform depth (VID = 0)  

When the depth of the fluid container isuniform (i.e., VID (x, y) = 0), and equal 
to Do, the non-viscous contribution, proportional to ii.V,D(x, y), to the ex- 
pression for the vorticity changes in the interior region due to the presence of 
end walls vanishes for any u (see right-hand side of (4.6)). When v + 0, the 
remaining contribution, proportional to (v/Q)+ <, vanishes only when [ = 0. Thus, 
as shown in Q 4, we must distinguish between two general cases: case (i) for which 
the relative vorticity, V:Az, of the corresponding strictly two-dimensional flow 
is zero, and case (ii) for whichV?A, $. 0. According to $ 3  (see especially (3.17) and 
figures 2 and 3), cases (i) and (ii) correspond, respectively, to j = 0 and j + 0, 
where j is the number of irreducible sets of closed curves across which the net 
flow of fluid is non-zero. We shall discuss these two cases separately. 

Case (i) .- j = 0 

Three examples are illustrated in figure 6, plate 1, the corresponding key to the 
source-sink arrangements being given in figure 2. Each photograph was taken 
several minutes after dyed fluid first entered the system via the source. In  each 
case, notwithstanding the rapid rotation of the whole apparatus at  speeds of 
over lo3 times the typical speed a t  which the fluid entered and left the working 
region, u in the main body of the fluid was irrotational and apparently unaffected 
by rotation, as theory predicts (see( 3.14)-(3.19) and $4). (The dye pattern in, 
figure 6 a  is the result of an entirely radial motion on an initial dye distribution 
which possessed azimuthal variations.) Ekman layers were present, presumably, 
on the end walls, but because they were very thin in comparison with the total 
depth of the fluid they produced no visible effects in these photographs. 

Although the cylindrical sources and sinks used in many of the experiments 
were designed so as to avoid variations inf(P) (see (3.3)) over their surfaces (see 
$ 6  and figures 9a, 1 2 ~ 4 ,  13a, b) ,  such variations were only completely negligible 
when special precautions were taken (see table 1). Fortunately the effects of such 
variations penetrated only a short distance into the working region. Beyond this 
distance (which, according to work by Lewellen (1965) and Barcilon (1967), 
and in keeping with general ideas, should be of order Di dfQ* em when non- 
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linear effects are negligible), u was independent of z (except, of course, in the Ek- 
man layers on the end walls). The theory of this penetration process when non- 
linear effects cannot be neglected does not seem to have been investigated. 

Although no pressure measurements were made, evidence that an appre- 
ciable azimuthal pressure gradient was associated with the radial flow depicted 
by figure 6a is presented in figure 7 b. The drop inp that forces fluid in the nega- 
tive 8 direction (i.e. ‘westward,’ from right to left in the lower part of figure 7 b )  
through the gap in the radial barrier should, according to (A7), fall short of 
Qq/n by an amount that increases with increasing gap-width, and vanishes 
altogether when the radial barrier is removed (see (A l), (5 .5 )  and figure 7a) .  

Case (ii):j $1 0 

Four examples are illustrated in figure 7 ,  plate 2 (see also figure 8, plate 3), the 
corresponding key to the source-sink arrangement being given in figure 3. 
Theory predicts that, in contrast to the other case, j = 0, when j + 0 the actual 
flows in the presence of plane, parallel end walls should differ considerably from 
their two-dimensional counterparts (see (3.18) and (4.7)), and the experiments 
confirm this prediction. 

That the transport of fluid from source to sink takes place via the Ekman 
layers and not via the interior of the fluid, where Vl$ = 0 (see (4.7)), was amply 
demonstrated in the experiment illustrated by figure 8 c (cf. figures 7 c, 8 a and b ) .  
In that experiment it was shown that the flow is unaffected by the introduction 
of a rigid impermeable barrier at the boundary of contact between the two gyres, 
provided that the combined widths of the gaps between the barrier and the end 
walls near z = 0 and z = Do, though much less than Do, are not too small (i.e. not 
less than the Ekman layer thickness, 3(v/Q)4).  Further verification of (4.7) is 
contained in figure 9, plate 4,  where measurements of Vr are plotted against r .  

Figure 10, plate 5, illustrates the width of the boundary layer on the source in 
an annular system (see figures 3a,  7 a ,  9) at  several different values of Q and Q. 
These observations were made as follows. For a short period of time (several 
minutes) the fluid was dyed before it entered the working region via the surface 
of the source. When viewed from along the axis of rotation the region occupied 
by the dye formed an annular ring which slowly grew in size until its outer radius 
had attained the value (a +AE) ,  beyond which point the ring of dye suffered 
virtually no further increase in size (cf. figure 4). z variations in the outer radius of 
the dyed region were slight (in keeping with (5 .5 ) ) .  It is noteworthy that, on 
stopping the supply of dye, the clearing that then occurred of the ring of dyed 
fluid on the source first became pronounced close to the surface of the source 
and then proceeded outwards. 

One feature of the observed flow suggests that the theoretical flow pattern 
given in figure 4is a slight over-simplification. In  that diagram no re-circulation of 
fluid between the boundary layer on the source and the Ekman layer is indicated. 
Had re-circulation been absent in practice, the clearing of the dyed region would 
have eventually been complete. In  fact, when the flow did not develop non- 
axisymmetric features a cylindrical sheet of dye remained long after the rest 
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FIGURE 11. Experimental determinations of 2, the dimensionless thickness of the bound- 
ary layer on the source or sink, plotted against X ,  a dimensionless measure of Q (see 
(5.10) and (5.8), cf. figures 5, 9 and 10). The curve represents the dependence of 2 on X 
predicted by the theoretical expression (5.13). The points a t  X = 0-0038 and X = 0.0096 
are based on two determinations of the thickness of the boundary layer on the sink at 
r = b obtained incidentally in another study (Hide, Ibbetson & Lighthill 1968). All the 
other points are for boundary layers on the source at r = a. The symbols have the follow- 
ing meaning : 

L2 (rad/sec) 1.0 2.0 3.0 4.0 
Do (em) 
4.06 X + A a = 0.485 cm 
4.85 0 0 0 a = 2.71 cm 

a = 2.80cm 2.90 n v 
30.9 8 b = 14.6cm 

(Depth D uniform, see figure 10 and table 1 for full experimental details.) 

DESCRIPTION OF PLATE 5 

FIGURE 10. Illustrating the variation of A g  with L2 and Q ,  and the wave-like instabilities 
that arise in certain circumstances. (a) ,  (b) ,  (c) and (d) show the end view of the cylindrical 
sheet of dye that remained long after the axial flow in the boundary layer on the source 
had cleared the remainder of the nigrosine dye introduced earlier at the surface of the 
source. No cylindrical dye sheet formed in the cases illustrated by ( e )  and (f), which are 
pictures of the non-axisymmetric pattern of flow that then occurred, taken before axial 
flow in the boundary layer had completely removed the dye from that region. Values of 
Q and s2 are a8 follows : 

(6) ( c )  (4 ( e )  (f) 

!2 (rad/sec) 4.00 4.00 4.00 2.00 1.00 1.00 

(a) 
Q (cm3/sec) 2.27 1.33 0.45 2.27 1.33 0.45 

(Depth D uniform; see table 1 for full experimental details.) 
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FIGURE 10. For legend see facing page. 
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of the dyed region had cleared (see figures lOa-d), suggesting that near the inter- 
face between the boundary layer on the source and the interior region axial 
motion away from the Ekman layers may have been taking place. 

In the first part of the investigation of the thickness AE of the boundary layer 
on the source, fluid entered the working region as small jets emerging from tiny 
holes in the perforated Perspex cylinder (see $6). The effect of these jets was to 
increase the effective radius of the cylindrical source. ‘Jet effects’ were eliminated 
in later work. 

A, was determined from measurements of the final value of the outer radius of 
the ring of dye. These determinations (uncorrected for the ‘jet effects’ that were 
present in all but one series of measurements) are given in figure 11, where Z, 
the thickness of the boundary layer divided by the Stewartson thickness, is 
plotted against X (see (5.10) and (5.8)). 

These experimental results are consisten6 with several aspects of the theory 
presented in $5 2-5 (although the experiments will have to be extended and the 
theory refined before a truly quantitative theoretical interpretation of the 
observations can be attempted). First, they support the conclusion that X is the 
dimensionless parameter in terms of which Q should be measured. Secondly, they 
confirm the prediction of the approximate theory (see (5.13)) that the thickness 
of a source boundary layer should increase with X; the experimental variation 
of Z with X is slightly more rapid, if anything, than the theoretical variation. 
Finally, they give values of Z which are of the same order of magnitude as the 
theoretical values, although it remains to be shown that the apparent discre- 
pancy, of a factor of nearly 2, between theory and experiment is due to the 
neglect of curvature effects in the theory (see (5.15)). 

This estimate of the discrepancy is based on the comparison of the theoretical 
curve representing equation (5.13) with the most reliable experimental deter- 
minations of 2, namely Bhose for which ‘ jet effects ’ were absent (see figure 11). If 
‘jet effects ’ increase the effective size of the source by (Do v/sZ)S em, these effects 
can be corrected for by reducing Z by the amount (v/sZD:)& approximately, 
typical values of which are about 0.5. Simple considerations of geometrical con- 
vergence and divergence suggest that, owing to curvature effects, the thickness 
of a boundary layer on the inner cylinder should be (1 - /3A/a) times that given by 
(5.13), the corresponding factor for the outer cylinder being (1 +,8A/b), where ,8 
is a correction factor which is positive and less than unity. 

Several instabilities were observed during the course of the experiments, but 
as the study of these instabilities was not the main objective of the present work, 
their detailed discussion will be given elsewhere on the completion of further 
experiments now in progress. A few general remarks are, however, in order. 

In  the experiments just described on the dependence of A, on Q, 0, etc., 
at  certain values of Q and sZ the distribution of dye developed wave-like 
features as it emerged from the source (see figures 10e andf, plate 5) .  These non- 
axisymmetric features were manifestations, presumably, of non-axisymmetric 
instabilities of the basic axisymmetric flow in the boundary layer on the 
source (see figures 7 a  and lo&, plates 2 and 5). (Even in the case of figure 7a, 
the ring of dye is not quite axisymmetric.) The boundary layer on the sink 
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occasionally exhibited non-axisymmetric features even when the boundary layer 
on the source did not. There was evidence that these non-axisymmetric features 
may be inhibited or suppressed by the presence of a sloping bottom (cf. figures 
10e and 12a, plates 5 and 6). 

Evidence of axisymmetric instabilities was also found. In  certain experiments 
(including some with containers of non-uniform depth, see figures 13a and 13b, 
plate 7) stationary concentric sheets of dye appeared in the interior region. The 
outer dye sheets usually appeared before the inner sheets (see figures 12a, 13a, b) .  
These observations are reminiscent of those reported by Arons, Ingersoll & 
Green (1961) in their attempt to produce unstable Ekman layers, and it may be 
significant that typical values of the local Reynolds number in the Ekman layers, 
&/2nrv, were comparable (around 5 or 10) in the two investigations. 

The cause of these stationary dye sheets hasnot yet been established. Although 
it is less likely than in the work of Arons et al (who worked with a free upper 
surface) that they were due to spurious thermal effects, this possibility has 
not yet been eliminated. Temperature variations of or centigrade 
degrees within the fluid can be very troublesome when investigating details of 
the very slow flows. 

If it turns out that the dye sheets were not due to spurious thermal effects, then 
it will be necessary to entertain the possibility that vertical motions in the Ek- 
man layers, caused by local axisymmetric instabilities or by the interaction of 
the side-wall boundary layers or the interior region with the Ekman layers (see 
Stern 1960), might have been responsible. (The Ekman layer instabilities reported 
by Gregory, Stuart & Walker (1955), Faller (1963) and Tatro & Mollo-Christensen 
(1967), who worked at  much higher Reynolds numbers than in the present ex- 
periments, are not axisymmetric and give rise to travelling-not stationary- 
disturbances.) 

Very complicated instabilities can occur when the basic flow is non-axisym- 
metric. Figure 13c shows that one effect of reducing IR by a large factor (and 
simultaneously increasing Q by a small factor) on the laminar flow illustrated 
by figure 76 is the production of several intense vortices superimposed on, and 
advected with, a general flow pattern that otherwise remains qualitatively 
unaltered. 

8. Experiments with containers of non-uniform depth (V,D f 0) 

We conclude this paper with a brief discussion of a few examples of source- 
sink flows in containers for which the depth variations are so much larger than 
the Ekman-layer thickness that, in contrast to the flows discussed in $7,  end 
effects result almost entirely from the non-viscous contribution to the right-hand 
side of (4.6). When the Rossby and Ekman numbers (see (5.7) and (6.1)) tend to 
zero, the flow is geostrophic and the left-hand side of (4.6) also tends to zero. 
Hence 6. V,D(x, y) = 0, implying that the trajectories of each fluid filament must 
be such that Dremains constant along it. I n  all examples considered, z, is constant 
and zI depends only on r ;  hence, geostrophic streamlines are circles concentric 
with the z-axis. 
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FICURE 12. The cffects of non-uniform depth on two flows for which j $- 0 ( ( a )  and ( d ) ,  
cf. figures 7 a and 8 c )  and on one flow for whichj = 0 ( ( b )  and (c), cf. figure 6 a ) .  (u), ( b )  arid (c) 
show the distribution of nigrosino dye several minutes after i t  had been introduced a t  the 
surface of the source. (d )  shows the effccts of the flow on lines of dye released from a wire 
stretched along a diametor a t  YO" to  the plane passing through t,hc axes of the source arid 
the sink. 

(a ) ,  where the bottom slope is positive (i.e. rZD/dr < 0), should be compared with figure 
10e, for which Q arid 0 arc the same and D noarly the same but dD/dr  = 0. Although 
the two flows are basically similar, the sloping bott>om cviciently inhibited any tendericy 
for non-axisymmetric instabilities to occur. 

( b )  and (c) illustrate flows under conditions that are comparable in every respect except 
for opposite (but equal) bottom slopes; dD/dr > 0 for ( b ) ,  dD/dr < 0 for (c). The slopirig 
bottom produces zonal relative motion which i s  not present in figirre Ba, for which 
D is uniform. A boundary layer occurs on one side of the radial barrier; the sense of the 
zonal motion and tho position of the boundary layer dcperitl on the sign of  the slope. 

(d)showshowa (negative) bott>om slope modifies the flow so strongly that in contrast tothe 
gyres illustrated by figures 7 c  and 8, its direction is mainly zonal. Had the bottom slope 
been zero, tho dye released a t  the wirc would have remained close to thc wiro until dif- 
fusion effccts became noticeable (see 5 8, cf. figiire 8c) .  (See tahlr 1 for exporimental details.) 

HIDE (Facing p .  760) 
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FIGURE 13. Further examples of  instabilities (cf. figures 10e, f and 12c). Figures 12a, 13a 
and b are three photographs of the same flo\v taken 4, 10 and 20 min aRer the commence- 
ment of a continuous injection of dye via the surface of the so~ircc. Note t.he presence in 
t,he interior region of faint dye sheets (seen end on) ; these sh  may be maiiifestations 
of some form of axisymmetric instability (see text). 

(c)  shows that one effect on tjhe laminar flow illustrated by figiirt 7 6  of reducing 0 
by a large factor (and simult,:trieously increasing CJ by EL small factor) is the production of 
several intense vort,iees superimposed on, arid advect>ed with, a general flow pattern that 
otherwise remains qualitatively unaltered. The Ekmaii and Rossby numbers ( y  arid c ,  see 
(5 .7)  arid (6.1jj, were, respectively, and 1 approximately for this experiment, and 
very much greater than the corresponding vahirs of 1) arid c: for the other experimorlts. 
(See table 1 for full rxperimental details.) 

HIDE 
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Case (i):j = 0 (cf. $ 7 )  

Figures 12b and c illustrate flows under conditions that are comparable to 
each other in every respect except for opposite (but equal) bottom slopes, 
negative for ( c )  and positive for ( b )  (see table 1 ,  cf. figure 6 a ;  see Stommel, 
Arons & Faller (1958) and Faller (1960) for related work). The sloping bottom 
produces zonal relative motion, which in turn gives rise to a boundary layer on 
one side of the radial barrier, in which much of the radial transfer of fluid occurs. 
The general sense of the zonal motion and the position of the boundary layer 
depend on the sign of the slope. Thus, for example, in accordance with (4 .6) ,  
when dz,/dr > 0 (cf. figure 12  b ) ,  a fluid filament develops a strong positive axial 
vorticity, <, and swings ‘eastward’ as it moves outward from the source. It 
eventually joins the boundary layer on the ‘western’ side of the radial barrier and 
then continues to move radially outward, with little or no azimuthal component of 
motion. On leaving the boundary layer on the barrier, the filament swings ‘west- 
ward ’ into a boundary layer on the sink from which it finally leaves the system. 

When dx,/dr < 0 (see figure 1 2  c ) ,  the zonal motion is opposite to that described 
above for the case dzl/dr > 0 (see figure 12b),  and the viscous boundary layer on 
the radial wall now occurs on its ‘eastern ’, rather than its ‘western’, side. Further 
work will be needed to establish why the irregular features seen in the first 
quadrant of figure 12c are not present in figure 12 b.  

Case (ii): j =# 0 

Comparison of figure 12a (see also figures 13a and 13b), for which D is variable, 
with figure 7a,  for which D is uniform, shows that, in contrast to cases where 
j = 0 (see figure 3, cf. figure 2 )  such as the one just considered, whenj + 0 and 
the flow is axisymmetric the flow is not profoundly affected by an axisymmetric 
sloping bottom (although, as noted in $ 7 ,  one effect of the sloping bottom 
seems to be the suppression or inhibition of non-axisymmetric instabilities 
(cf. figure l o e ) ) .  It should be a straightforward matter to extend the theory of 
the side-wall boundary layers developed in $ 5  to cases where D is no longer 
uniform, and to carry out related experimental studies of the structure of these 
boundary layers, along the lines of the experiments described in $ 7  above. 

In  conclusion mention should be made of the complicated experiment that 
led to all the others discussed in this paper. In  that experiment, illustrated by 
figure 12d, the profound effect of an axisymmetric sloping bottom on non- 
axisymmetric source-sink flows (with j = 2, see figure 3c)  was investigated 
briefly. Had the bottom slope been zero, as in figures 7 c and 8,  the motion in the 
main body of the fluid would have comprised two gyres, one surrounding the 
source and the other surrounding the sink, with a plane of symmetry on which 
u has no zonal component passing through the axis of the container a t  right angles 
to the plane containing the axes of the source and sink. 

Such a flow pattern is not consistent with ii. V, D = 0 when V, D + 0. An axi- 
symmetric bottom slope gives rise to a motion that is mainly zonal everywhere, 
as dye released from a wire placed in the plane of symmetry mentioned above 
clearly indicates (see figure 12d) .  The zonal motion at  distances from the axis of 
the container close to that of the source and sink appeared to be directed towards 
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the source, suggesting that, as in the case of zero bottom slope, much, if not all, 
of the transport of fluid from source to sink took place via boundary layers, and 
not via the main body of the fluid. Further work is clearly needed here. 

The work of the Geophysical Fluid Dynamics Laboratory, Department of 
Geology and Geophysics, M.I.T., is supported by the National Science Foundation 
(Atmospheric Sciences Program) ; this is paper number 22 of that laboratory. 

Appendix. Steady two-dimensional axisymmetric flows 
The simplest conceivable flow in a system for whichj + 0 (see (3.14)-(3.19)) 

is the axisymmetric motion that arises when the source and sink are coaxial 
porous rigid cylinders in r = a and r = b (i.e. m = 2,  gl(x, y) = ( x 2 + y 2 - a 2 ) ,  
g2(z,y) = (x2+y2- b2)) and f(P) is independent not only of z but also of the 
azimuthal angle 0 (see figure 3 a ) .  Fluid enters and leaves a t  the constant rate 
q/2n- cubic centimetres per second per unit length in the x direction per unit 
angular distance in the azimuthal direction (see (3 .1)  and figure 3 a ) .  The theory 
of this flow was first discussed by Hamel (1916) .  

Exact solutions of (3 .5 )  to (3 .10)  under the appropriate boundary conditions, 
namely ra#/ar = q/2n- and aA/ar = 0 on r = a and r = b, are the following: 

a#lar = ql~n-r, appe = 0,  

- Q - r +  bS+2 - 1 aS+Z (b2a2(br - as) + (b2 - a2) rS+')] ,  (A 1 )  
aA 
ar - -  

the dependence of aApr on r and S is illustrated by figure (A 1). Here 

q being reckoned positive or negative according as the source-sink flow is directed 
radially outwards or inwards; R is a Reynolds number based on the source 
strength. 

The result that 2J#/ar is independent of R is not, of course, surprising, since 
the radial motion is determined entirely by continuity considerations. When 
R $- 1 and q > 0, aA = Q[C+ 2-a2)  ( t ) R + : - r ] ,  r 

= RqlIqI, R = Iql/2n-v9 (A 3 )  

ar 

with comparable but slightly different expressions when p < 0. According to 
(A4), except in the vicinity of the sink, where a viscous boundary layer of thick- 
ness b/R (or a / R  when q < 0) occurs, individual fluid particles conserve their 
angular momentum and the azimuthal flow has zero absolute vorticity (cf. 3.18).  
Within the boundary layer on the sink, where b ( 1 -  R-l) < r < b, 
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In  the inviscid limit (R -+ 00) the no-slip condition is no longer satisfied on the 
sink. 

The other limit, R < 1, is also interesting (see figure A l ) ;  then, by ( A l )  and 
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FIGURE 4 1 .  The variation of azimuthal velocity Y with r for an annular system when 
b/u = 4 a t  different values of S = q/27rv (see figure 3a and equation (A 1)).  When I S I $ I 
individual fluid particles tend to conserve their angular momentum in the main body 
of the fluid, the corresponding relative vorticity, c, being close to - 2Q. A boundary layer, 
of thickness b/S when S > 0 (and all81 when S < 0) ,  and in which c N ISIQ, forms on the 
surface of the sink, but there is no corresponding boundary layer on the source. 

The simplest conceivable flow in a system for whichj = 0 is the motion thab 
arises when the annular source-sink arrangement (see figure 3 a )  is modified by 
connecting the two bounding cylinders in r = a and r = b by a thin, rigid, im- 
permeable barrier (see figure 2a). This modification changes m from 2 to 1 and 
leads to the automatic satisfaction of (3.16) (cf. figure 2 4 .  
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The flow is no longer strictly axisymmetric; when v 4 0, a$/ar cannot be in- 
dependent of 0 and a t  the same time satisfy the ‘no-slip ’ condition on the radial 
barrier. Moreover, owing to the presence of the barrier, apla0 need not vanish 
(cf. (A 1)). In the inviscid limit, however, 

are exact solutions of (3.5)-(3.10) (cf. (3.19) and (A1)-(A4)). The relative flow 
then has neither circulation nor vorticity, the only effect of Q being the setting 
up of an azimuthal pressure gradient supported by the barrier. This pressure 
gradient (cf. (3.14)) supplies the torque required to change the energy and the 
angular momentum of a fluid particle as it moves radially without suffering any 
sideways displacement. The jump in p across the barrier, 2Qq, exactly offsets 
the Coriolis acceleration associated with the radial flow. 

It might be of interest to conclude by mentioning that the effect of rotation 
on two-dimensional source-sink flows is roughly analogous to that of a magnetic 
field on electric currents in a fixed conductor (Hall effect). The analogues o f j  = 0 
systems (see figure 2) arise when the shape of the conductor is such that a per- 
manent electric charge distribution can be set up to provide an electric field 
(analogous to V,p) that exactly offsets the effect of the magnetic field (analogous 
to SL) on the electric current (analogous to U) ; the electric current flow will then be 
unaffected by the magnetic field, whose effect is manifested as a ‘Hall potential’. 
When, owing to the shape of the conductor, no such charge distribution can be 
set up we have the analogues of j  $- 0 systems (see figure 3) ; the magnetic field then 
gives rise to a ‘Hall current ’. 
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